
On-Board Guarded Software Upgrading for Space Missions*

Ann T. Tai Kam S. Tso Leon Alkalai Savio N. Chau William H. Sanders
IA Tech, Inc. Jet Propulsion Laboratory CRHC

1050 1 Kinnard Avenue California Institute of Technology University of Illinois
Los Angeles, CA 90024 Pasadena, CA 9 1 109 Urbana, IL 6 180 1

1 Introduction

The evolvable avionics systems such as the X2000 at
NASA/JPL are able to have software upgrades during
a long-life mission for dependability, performance and
functionality improvement (we call it “on-board soft-
ware upgrade”) [l]. While evolvability itself can be
viewed s cn-board perfective maintenace, it neces-
sitates preventive maintenance and corrective main-
tenance for eliminating or mitigating potential error
conditions caused by residual faults in an upgraded
system configuration or software version, and toler-
ating possible inconsistencies between the old and
new configurations/versions. We collectively view the
three types of mechanisms as on-board maintenance
and have been investigating into the development and
implementation issues [1, 21. To date, on-board soft-
ware upgrade still requires to reboot the entire flight
software for terminating the old version and starting
the new one. In the Mars Pathfinder mission, it took
two hours to complete the patch process for two small
changes (in the flight software) made as a result of
Operational Readiness Test, during which the normal
functions of the flight computer was stopped [3]. The
costly performance loss is apparently unacceptable for
the future NASA missions.

Other types of deficiency in software upgrading
may even cause more severe damages to a mission.
For example, NASA experienced a gap in fault pro-
tection on April 10, 1981, when a timely synchroniza-
tion check was omitted after the addition of an alter-
nate reentry program [4]. As a result, the first flight of
the US space shuttle program was aborted 19 minutes

’The work reported in this paper was supported in part by
Small Business Innovation Research (SBIR) Contract NAS3-
99125 from Jet Propulsion Laboratory, National Aeronautics and
Space Administration.

before launch. The necessity for guarded software up-
grading is further testified by the recent event: At 39
seconds after launch, the Ariane 5 self-destruct mech-
anism activated, obliterating the rocket; the Ariane 5
was an upgrade of the Ariane 4. The upgraded soft-
ware, based on in part of the Ariane 4 software, could
not handle the higher velocities of the Aiane 5 [5].

In summary, with rcspect to long-lifc applications,
the key factors that necessitate on-board maintenance
for evolvable software are: 1) potential loss of sys-
tem availability, normal mission functions, and mes-
sage/data during uploading and version switching; 2)
possible gaps between the old and new software ver-
sions with respect to their computation algorithms,
or fault protection mechanisms; and 3) residual de-
sign faults introduced by the addition or modification
of an spacecraftkcience function. In this paper, we
describe a methodology, called guarded software up-
grading (GSU), that enables seamless and dependable
on-board software upgrading and feasib!e for middle-
ware implementation.

The error containment and protection methods for
GSU are based on checkpointing, message logging
and rollbackholl-forward recovery techniques [6, 7,
8, 91 that are adapted and extended to accommodate
the requirements from the X2000 architecture and ap-
plications. The same methodology can be applied to
the two stages of guarded software upgrading, namely,
on-board validation and guarded operation, as well as
version switching for the transition from the first stage
to the second stage, to minimize performance degra-
dation and prevent message/data loss.

The remainder of the paper is organized as follows.
Section 2 provides a scenario-based description of our
GSU methodology, followed by Section 3 presents a
middleware architecture for the GSU methodology re-
alization. The concluding section discusses the signif-

1

icance of this effort and our plan for the subsequent
research.

2 Guarded Software Upgrading

2.1 General Approach

The following methodology design is based on the
X2000 architecture configuration with three proces-
sors, two of which are required to perform space-
crawscience functions during a non-critical mission
phase. With the GSU methodology, the software
aimed for upgrade will go through two stages:

After the upgraded software version enters its ac-
tual operational phase, the computation results of the
old version will be suppressed although its execution
continues. When an error is detected in the upgraded
version, the old version will take over the operation
based on checkpointing and message logging.

Version switching

In the first stage, on-board validation, we con-
firm, through on-board test runs, a software ver-
sion's ability to perform its functions complying
with the mission requirements under the current
conditions of the spaceborne system and environ-
ment.

In the second stage, guarded operation, we al-
low the new software version to actually perform
its science or spacecraft functions for the mission
(version switching after confidence is established
through on-board validation), guarded by the old
version and a set of error containment and pro-
tection mechanisms.

As shown in Figure 1 during the validation stage,
the upgraded version is executed concurrently with
the old version and its computation results are sup-
pressed but are checked by an acceptance test or com-
pared with the results from the old version; at this
stage, checkpointing is used to enable the upgraded
version to recover from a detected error by restart-
ing from a state copied from the old version, based
on checkpointing.

Since the checkpointing-based error containment
and protection technique facilitates the maintenance
of an on-board error log and classification of error
events, those error data can be downlinked to the
ground to facilitate statistical modeling and heuristic
trend analysis. This in turn, will be used to support
decision making on whether and when to switch the
versions. During version switching, message logging
enables the avoidance of missing messages and redun-
dant messages.

Stage 1 : Stage 2:
On-board validation Guarded operaton

Figure 1 : Two-Stage Approach

To facilitate the description of our checkpointing
and messaging logging schemes for error containment
and recovery, we introduce the following notation:

Void The process corresponding to the
software version before an upgrade.

Vnew The process corresponding to the
upgraded software version.

PC The cooperative process (another
program in the distributed system)
which runs on the third processor
and interacts with Void and/or Vnew.

Further, we call the version in use (i.e., its outgoing
messages are actually sent to a device or a cooperative
process) an active version, and refer the version which
executes with its outgoing messages suppressed as a
shad0 w version.

The algorithms are message driven in the sense
that, checkpointing and message logging are per-
formed before or after a process sends or receives a
message. An acceptance test is performed for mes-
sages to be sent to a device (or anywhere external to
the computing system). More precisely, acceptance
test is carried out after a process generates a message
and before it is transmitted. The following are our ba-
sic assumptions:

1 . Messages between processes and between a pro-
cess and a device are functions of input data (re-
ceived by a process from incoming messages or

2

from instrument readings). For the same input V",W

data, the output data (message) from V,,, and Checks correctness of every message it intends
Void shall be equivalent. to send by applying acceptance test and logs the
An earlier version of the software and the soft- message with a sequence number, during its exe-

ware comprising the cooperative process are cution as a shadow.
more reliable than the the upgraded version. Deletes a message from the log after it receives

J. An erroneous state of a process is likely to affect
the correctness of its outgoing messages, while
an erroneous message received by an applica-
tion will result in an erroneous state of the cor-
responding process. Therefore, the correctness
of checkpoints and messages can be traced and
analyzed for rollback or roll-forward recovery.

To implement the methodology, we design a mid-
dleware architecture, the GSU Middleware, which en-
ables the checkpointing and message logging mecha-
nisms to be smsparent to the programmer. For exam-
ple, the GSU middleware provides a message sending
service that can be invoked by an application software
- send () . This application invokable service may
involve one or some combination of the following:
1) actual message transmission, 2) message suppres-
sion, 3) message logging, 4) taking a checkpoint, and
5) performing acceptance test. When send () is in-
voked by an application, the GSU Middleware selects
action(s) from the above set based on (see Section 3
for more design details):

0 Execution context (in which the message is sent):

- Version switch
- On-board validation
- Guarded operation

0 Execution process (that sends the message):

- Active version process
- Shadow version process
- Cooperative process

2.2 On-Board Validation and Seamless Ver-
sion Switching

During on-board validation and seamless version
switching, Vnew is the shadow process and Void is the
active process; different processes in the system per-
form checkpointing and message logging as follows.

3

the notification from Void that indicates the cor-
responding message (identified by message se-
quence number) has and been sent (by Void).

Takes a checkpoint after it receives a message
from PC and before passing it to the application.

Upon version switching, it becomes the active
version and the logged messages are sent to PC
or devices, if its message log is not empty.

e Vold

Actually sends out the messages to PC and de-
vices. When it sends a message, it l) sends a
copy of the message together with the message
sequence number to PC or a device; and 2) sends
the message sequence number and a copy of its
state, or just the former, to Vnew. Sending its
complete state provides another means for Vnew
to check its correctness and enables the recov-
ery upon error detection (at the cost of additional
data transmission).

0 PC
Takes a checkpoint which saves the message se-
quence number after it receives a message from
Void and before passing it to the application.

When it sends a message to Void, it dso sends a
COPY of the message to Vnew, such that Vnew can
execute in the same control flow as Void does.

When it receives messages from VneW after ver-
sion switching, it checks whether a message is re-
dundant by comparing the sequence number with
that of the latest message received from Void.

Figure 2 illustrates the scenario in which Vnew di-
rectly goes to normal operation ("roll forward"), upon
version switching, without re-sending the suppressed
messages from its message log or suppressing any
newly generated messages. This is because the global
state satisfies the consistency property (as defined in
[9]) when version switching is initiated.

Verslon switch Verslon switch

PC I-

I Checkpointing "-+ Actual interaction

0 Checkpointing with
----- * Supressed interaction

message logging _ _ _ _ _ _ _ * Message notification

Figure 2: Version Switch without Message Re-send or
Suppression

Figure 3 depicts the scenario of version switching
(for the transition from on-board validation to guarded
operation) in which Vne, needs to re-send the sup-
pressed message m2 from its message log, upon ver-
sion switching. And the message will undergo an
acceptance test before transmission, as the version
switching brings the system to the guarded operation
stage. In this case, message-logging (of Vnew) assures
recoverability (as defined in [9]) and prevents the sys-
tem from losing messages during upgrade.

Figure 4 describes the scenario in which Vnew
needs to suppress message m2, after version switching
and when it executes to the point where the message
is generated. In this case, message sequence number
plays a crucial role for avoidance of redundant mes-
sages.

Version switch

vold 1
!
I

I Checkpointing - Actual interaction

0 Checkpointing with
----- * Supressad interaction

message lowing _ _ _ _ _ _ _ .c Message notiicatbn

Figure 3: Version Switch with Message Re-send

2.3 Guarded Operation

During guarded operation, Vnew becomes the active
and Void becomes the shadow; different processes in
the system perform checkpointing and message log-

I Checkpointing - Actual interaction

0 Checkpointing with
----- * Supressed interaction

message logging _._____ * Message notification

Figure 4: Version Switch with Message Suppression

ging as follows.

vnew

Performs acceptance test when it needs to send
a message to a device. When it sends a message
to device or PC, it sends the message sequence
number to Void.

Void

Checks the correctness of every message it in-
tends to send using acceptance test and logs it
with a message sequence number, during its exe-
cution as a shadow.

Deletes from the log the messages with sequence
numbers smaller or equal to the sequence number
piggybacked on the latest message from PC that
identifies the last message it received from Vnew
before its most recent successful acceptance test.

Takes a checkpoint after it receives a message
from PC and before passing it to the application.

Upon error recovery, it becomes the active ver-
sion and the logged messages are sent to PC or
devices, if its message log is not empty.

P C
Performs acceptance test on the message it in-
tends to send to a device and takes a checkpoint
immediately after it sendssout the message which
passes acceptance test.

Takes a checkpoint which saves the message se-
quence number after it receives a message from
Vnew and before passing it to the application.

When it sends a message to Vne,, it also sends
a copy of the message to Void, such that Void

4

can execute in the same data and control flows
as V,,, does.

Figure 5 illustrates the scenario in which V,,, fails
on acceptance T2 and Void will subsequently take over
without rollback, re-sending logged messages or sup-
pressing newly generated messages. This is because
the global state, at the time when Vne, fails the accep-
tance test T2, satisfies the consistency property.

Figure 5 : Roll Faward without AMessage Re-send or
Suppression

Figure 6 illustrates the scenario in which Vnew fails
on acceptance T3 and Void will subsequently 1) take
over without rollback, and 2) re-send the suppressed
message that passed acceptance test T2. Again, mes-
sage logging at the sender's side assures recoverabil-
i t y .

t t

1 Checkpointing - Actual interaction

0 Checkpointing with
----- D Supressed interactim

message logging _ _ _ _ _ _ _ - Message notification

@ Passon AT

@ No-pass on AT

Figure 6: Roll Forward with Message Re-send

Figure 7 illustrates the scenario (at the guarded op-
eration stage) in which V,, fails on acceptance T4.
Since the global state that comprises the process states
of Void and PC at the time of the failure satisfies the
consistency property (as defined in [9]), Void will sub-
sequently 1) take over the control without rollback,

and 2) suppress the message that equivalent to the first
message of V,,, after version switching and when it
executes to the point where the message is generated.
Again, message sequence number enables the avoid-
ance of redundant messages.

4 4

Vnew I x lc

Checkpointing - Actual interaction
Checkpointing with ----- D Supressed interaction

0 message logging _ _ _ _ _ _ _ * Message notification
(AT) Pass on AT

8 No-pass on AT

Figure 7: Roll Forward with Message Suppression

Figure 8 illustrates the scenario in which V,,,
fails on acceptance T3 and Void rolls back to check-
point B3, upon version switching, without sending out
logged messages or suppressing any newly generated
messages; and PC rolls back to checkpoint C3. Note
that B3 and C3 comprise the most recent recoverable
consistent system state [LO].

1 Checkpointing - Actual interaction

0 Checkpointing with
----- t Supressed interaction

message logging _ _ _ _ _ _ _ * Message notitication

(Ar> Passon AT

@ No-pass m AT

Figure 8: Rollback Recovery without Message Re-
Send or Suppression

Figure 9 depicts the scenario (at the guarded op-
eration stage) in which V,,, fails on acceptance T2.
Upon the version switching triggered by the failure,
Void rolls back to checkpoint B4 and needs to re-send

5

message m2, while PC rolls back to checkpoint C3.
In this case, B4 and C3 comprise the most recent re-
coverable consistent system state (as defined in [lo]).
And similar to the version switchng case and roll-
forward case, message logging assures recoverability.

t

I Checkpointing - Actual interaction

0 Checkpointing with
-----* Supressed interaction

message logging _ _ _ _ _ _ _ c Message notiication
(AT) Pass on AT

@ No-pass on AT

Figure 9: Rollback Recovery with Message Re-Send

Figure 10 describes the scenario in which V,, fails
on acceptance T3 and Void rolls back to checkpoint
B3, and needs to suppress message m2 and the first
message to the device, after version switching and
when it executes to the point where the messages are
generated; PC rolls back to checkpoint C3. Here, B3
and C3 comprise the most recent recoverable consis-
tent system state. And similar to the version switching
case and roll-forward case, message sequence num-
ber plays a crucial role for the avoidance of redundant
messages.

c1

I Checkpointing - Actual interaction

0 Checkpdnting mh
----- * Supressed interaction

message bgging _ _ _ _ _ _ _ c Message notification

(AT) pass on^^

f@ No-pass on AT

Figure 10: Rollback Recovery with Message Suppres-
sion

3 GSU Middleware

Figure 11 shows the relationships among the major
components that comprise the GSU Middleware ar-
chitecture, namely, how the invokable services, active
agents and on-board tools collaborate to accomplish
guarded software upgrading.

Applications:
spacecraWscience functions

t

vxworks

Figure 1 1: GSU Middleware Architecture

As mentioned earlier, invocations of the invokable
services send () and receive () by an application
program may result in different activities, depending
upon the role of the invoking process and the execu-
tion environment, as described in Tables 1 and 2.

As shown in Figure 11, the invokable services are
supported by a group of active agents, namely,

Message-log maintenance agent: Responsible
for deleting the messages that are no longer
necessary to remain in the message log of a
process.

Checkpoint maintenance agent: Responsible
for deleting the checkpoint that is no longer
necessary to be maintained.

Error-detection agent: Responsible for carrying out
acceptance test and raising the error flag upon a

6

Table 1: Invokabie Services During On-Board Validation

Void PC Vnew

send (1 Sends the message to both Void Suppresses the message and Actually transmits a message
and sends the message se- saves it in the message log. and Vnew.
quence number to Vnew (mes-
sage notification).

, receive () Takes a checkpoint before pass- Saves the message sequence Passes it to application directly.
number if it is a message no-
tification from Void; otherwise

ing it to the application.

it to aodication.
message logging, and 2) passes
1) takes a checkpoint and does

failed acceptance test.

Error-recovery agent: Responsible for monitoring
the error flags and making decision on recovery
mechanisms upon a failed acceptance test, e.g.,
decisions on roll-forward or rollback, the roll-
back distance for each process, and whether mes-
sage suppression or re-sending is required.

Error-log agent: Responsible for the maintenance of
an on-board error log and classification of error
events/symptoms (e.g., single or recurrent error
type) for downlinking to the ground to facilitate
statistical modeling and heuristic trend analysis.

The agents for checkpoint and message-log mainte-
nance are important for cost-effective memory utiliza-
tion and assuring only the information necessary for
version switching or error recovery are maintained.
Specifically, for the on-board validation stage during
which V,, runs as a shadow and thus its error will
not contaminate other processes, Vnew needs only to
keep its most recent checkpoint for the rollback re-
covery if an error is detected; while PC needs only to
keep its most recent checkpoint for keeping track of
incoming messages and rejecting redundant messages
after version switching. As to the guarded operation
stage during which errors of the active Vnew will con-
taminate other processes, when V,,, or PC passes an
acceptance test, all the processes need only to keep
their most recent checkpoints; when Void passes an
acceptance test, the previous checkpoints of its own
and those of PC taken prior to its most recent message
received by Void (that has proved to be correct via the

acceptance test of Void) can be deleted, excluding the
most recent checkpoint.

4 Summary and Future Work

Aimed at avoiding or minimizing mission perfor-
mance degradation due to software upgrading activi-
ties and due to system failure caused by residual faults
in an upgraded version, we have proposed an approach
to guarded software upgrading. Our approach em-
phasizes 1) the utilization of nondedicated or inherent
system resource redundancies such as an earlier soft-
ware version and a processor that otherwise would be
idle in the mission phase during which software up-
grading activities are conducted, and 2) low-cost ef-
ficient error containment and protection mechanisms
based on adaptatiodextension of the enabling tech-
nologies such as checkpointing and message logging.

In addition to NASA's X2000 missions, the GSU
methods could benefit a wide variety of commercial
application domains. In particular, 1) the guarded
software upgrading techniques will be useful for many
other applications which are subject to frequent soft-
ware upgrading and require high availability and/or
safety, such as Internet services, transportation sys-
tems, airline reservation systems, telephone systems
and medical systems, and 2) the methods of utilizing
inherent, non-dedicated resource redundancies and
our low-cost flexible error containment and recovery
algorithms will enable the transferring of the state-of-
the-art fault tolerance techniques from research do-
main to real applications. Currently, we are formaliz-

7

Table 2: Invokable Services During Guarded Operation

send ()

receive (1

Suppresses the message and
saves it in the message log; if
the message destination is a de-
vice, performs acceptance test
before logging the message.

If it is a message notification
from Vnew, save the message
sequence number; otherwise 1)
takes a checkpoint and does
message logging, and 2) passes
it to application.

Vnew
Actually transmits a message
and sends the message se-
quence number to Void; if the
message destination is a device,
perfoms acceptance test before
sending the message.
Passes it to application directly.

ing the error containment and protection methods and
conducting formal algorithm verifications. We also
plan to carry out a series of case studies based on an-
alytic methods and testbed experiments to investigate
the effectiveness of the GSU methodology for a vari-
ety of software applications in space systems.

References

[l] L. Alkalai and A. T. Tai, “Long-life deep-space
applications,” IEEE Computer, vol. 31, pp. 37-
38, Apr. 1998.

[2] A. T. Tai and L. Alkalai, “On-board maintenance
for long-life systems,” in Proceedings of the
IEEE Workshop on Application-Specific SOB-
ware Engineering and Technology (ASSET’98),
(Richardson, TX), pp. 69-74, Apr. 1998.

[3] R. Baalke, Office of the Flight Operations Man-
ager, “Mars Pathfinder update,” Mars Pathfinder
Weekly Status Report, Jet Propulsion Lab-
oratory, California Institute of Technology,
Pasadena, CA, June 1997.

[4] A. Aviiienis, “Towards systematic design of
fault-tolerant systems,” IEEE Computer, vol. 30,
pp. 51-58, Apr. 1997.

[5] J. L. Lions (The Chairman of the Board),
ARIANE 5 Flight 501 Failure, July 1996.
URL=ht tp : / / s spgl .bnsc . r l . ac .uk
/Share/ISTP/ar ianeSr .htm.

PC
If the destination is Vn,,, sends
the message to both Void and
Vnew; if the message destina-
tion is a device, performs ac-
ceptance test before sending the
message.
Takes a checkpoint before pass-
ing it to the application.

[6] B. Randell, “System structure for software fault
tolerance,” IEEE Trans. Software Engineering,
vol. SE-1, pp. 220-232, June 1975.

[7] K. S. Tso and A. Aviiienis, “Community error
recovery in N-version software: A design study
with experimentation,” in Digest of the 17th An-
nual International Symposium on Fault-Tolerant
Computing, (Pittsburgh, PA), pp. 127-133, July
1987.

[8] Y. M. Wang et al., “Checkpointing and its appli-
cations,” in Digest of the 25th Annual Intema-
tional Symposium on Fault-Tolerant Computing,
(Pasadena, CA), pp. 22-31, June 1995.

[9] N. Neves and W. K. Fuchs, “Coordinated check-
pointing without direct coordination,’’ in Pro-
ceedings of the 3rd IEEE Infernational Com-
puter Performance and Dependability Sympo-
sium, (Durham, NC), Sept. 1998.

[101 E. N. Elnozahy, D. B. Johnson, and Y.-M.
Wang, “A survey of rollback-recovery protocols
in message-passing systems,” Technical Report
CMU-CS-96-181, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, Oct.
1996.

8

URL=http://sspgl.bnsc.rl.ac.uk

